Search results

Search for "colloidal lithography" in Full Text gives 19 result(s) in Beilstein Journal of Nanotechnology.

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • substrate between the dimples. Keywords: adhesion; biomimetic micropatterned adhesive; colloidal lithography; friction; pull-off; soft substrate; Introduction Pull-off and friction forces of micropatterned adhesives as a function of geometry, feature size, and stiffness Over the last few decades
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • , Campus Ecotekne, Via Monteroni, Lecce, Italy National Institute of Gastroenterology “S. De Bellis” Research Hospital, via Turi 27, 70013, Castellana Grotte (Bari), Italy Institute for Microelectronics and Microsystems, IMM-CNR, Lecce, Italy 10.3762/bjnano.9.150 Abstract Colloidal lithography is an
  • different sizes and materials. Keywords: colloidal lithography; electrostatic interactions; large-area nanostructure patterning; localized surface plasmon resonance; spherical nanoparticles; Introduction In recent years, ordered nanostructured arrays have attracted great interest because of their
  • size, shape and distribution control. However, these processes have high cost and low speed and these limitations encourage the development of alternative methods for parallel nanofabrication. Among them, colloidal lithography is emerging as an innovative strategy for fast and inexpensive realization
PDF
Album
Full Research Paper
Published 29 May 2018

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • and the subradiant, whispering gallery modes of circular grooves of various depths milled into a gold film have also been previously studied [56][57]. Symmetric and anti-symmetric modes of nanopore pairs in thin AlN/Au/AlN films [58] have been investigated using CL. Through the use of colloidal
  • lithography, the authors [58] of were able to efficiently investigate a range of hole separations, but were restricted to weakly resonant circular apertures and pairs of holes. Here we investigate the resonances of small groups of apertures in gold films on a glass substrate. Specifically, we study ensembles
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Nanotopographical control of surfaces using chemical vapor deposition processes

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 1250–1256, doi:10.3762/bjnano.8.126

Graphical Abstract
  • feed. Trujillo et al. produced polymeric nanostructures using colloidal lithography [12]. In this technique, two-dimensional self-assembled monolayer (SAM) arrays of colloidal nanoparticles serve as lithographic templates for “nanobowl” patterns in an initiated chemical vapor deposition (iCVD) process
PDF
Album
Review
Published 12 Jun 2017

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • mold silicon on top. Finally, by treating the epoxy–silicon sandwich with oxygen plasma the epoxy is eliminated, rendering the metal structure on the silicon substrate [46][73]. Colloidal lithography is a technique relying on the arrangement of colloid particles, on 2D or 3D surfaces, to use it as
PDF
Album
Review
Published 08 Nov 2016

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • fabrication and low manufacturing cost that can also easily be done in low-class clean room areas, techniques such as polymer blend lithography or a modified nanosphere lithography (NSL) technique were recently developed [31][32]. Using colloidal lithography disordered nanoholes can be obtained. A combination
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

  • Kamil Moldosanov and
  • Andrei Postnikov

Beilstein J. Nanotechnol. 2016, 7, 983–989, doi:10.3762/bjnano.7.90

Graphical Abstract
  • substrate or embedded into a matrix transparent in the THz wavelength range. As for GNRs, Tseng et al. [16] fabricated nanorings using the colloidal lithography process. Hopefully, it could be tailored to provide the GNR sizes estimated here. Summarizing, fully aware that extremely small size nanoobjects
PDF
Album
Full Research Paper
Published 06 Jul 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • geometrical parameters in the 100–500 nm regime, a modified variant of colloidal lithography based on previous works [12][20] is applied. The approach exhibits remarkable flexibility as well as the possibility to pattern substrates on a centimetre scale. The preparation process consist of 4 steps: (a) the
PDF
Album
Full Research Paper
Published 24 May 2016

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

  • Mario Hentschel,
  • Bernd Metzger,
  • Bastian Knabe,
  • Karsten Buse and
  • Harald Giessen

Beilstein J. Nanotechnol. 2016, 7, 111–120, doi:10.3762/bjnano.7.13

Graphical Abstract
  • silver triangles fabricated by colloidal lithography to enhance the second harmonic emission from 3 bilayers of the ionic self-assembled film by about a factor of 1600. In 2008 Kim et al. [59] reported high-harmonic generation when argon gas was blown on bowtie antenna arrays. However, recent results
PDF
Album
Full Research Paper
Published 26 Jan 2016

Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

  • Cheng Huang,
  • Alexander Förste,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1205–1211, doi:10.3762/bjnano.6.123

Graphical Abstract
  • the size of the sub-wavelength holes [22][29][30]. Compared with colloidal lithography, which requires extra process steps to charge the substrate and the colloidal spheres, metal PBL brings a more convenient way to fabricate nano-hole arrays in various kinds of metal films with the potential to be
  • lithography can be used as wavelength-selective optical filters [25]. The photons couple to surface plasmons on the incident side of a nanohole film. These surface plasmons convert back to photons after they propagate through the holes to the opposite side of the film [26]. In recent years, also the colloidal
  • lithography method has been used to study the surface plasmonics of random nano-hole arrays in metal films [26][27]. Since the skin depth, and therefore the transmission of thin films, of Cu, Au and Ag is relatively high, we selected aluminum, which shows a high reflectivity in the range of 220 to 650 nm
PDF
Album
Full Research Paper
Published 26 May 2015

Synergic combination of the sol–gel method with dip coating for plasmonic devices

  • Cristiana Figus,
  • Maddalena Patrini,
  • Francesco Floris,
  • Lucia Fornasari,
  • Paola Pellacani,
  • Gerardo Marchesini,
  • Andrea Valsesia,
  • Flavia Artizzu,
  • Daniela Marongiu,
  • Michele Saba,
  • Franco Marabelli,
  • Andrea Mura,
  • Giovanni Bongiovanni and
  • Francesco Quochi

Beilstein J. Nanotechnol. 2015, 6, 500–507, doi:10.3762/bjnano.6.52

Graphical Abstract
  • for coating the plasmonic structures. The single layers were deposited with one dip and the double layers were deposited with two dips (where the second layer was deposited after 60 s after the first layer). The plasmonic structures were developed by Plasmore S.r.l. using colloidal lithography. They
PDF
Album
Full Research Paper
Published 19 Feb 2015

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • The plasmonic coupling between gold caps and holes in thin films was investigated experimentally and through finite-difference time-domain (FDTD) calculations. Sparse colloidal lithography combined with a novel thermal treatment was used to control the vertical spacing between caps and hole arrays and
  • . The interesting and complex coupling between caps and hole arrays reveals the details of the field distribution for these simple to fabricate structures. Keywords: caps; colloidal lithography; hybridization; localized surface plasmon resonance; near field; SRO hole arrays; Introduction The
  • for enhancement of plasmonic sensing systems [2][4][21]. Nanocap-hole arrays are extremely simple coupled structures to produce based on colloidal lithography with the potential for use in sensing applications. They have recently been applied for SERS enhancement [22]. Here we focus on investigating
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials

  • Jun Zhao,
  • Bettina Frank,
  • Frank Neubrech,
  • Chunjie Zhang,
  • Paul V. Braun and
  • Harald Giessen

Beilstein J. Nanotechnol. 2014, 5, 577–586, doi:10.3762/bjnano.5.68

Graphical Abstract
  • of hole-mask colloidal lithography. The SEM shows a 5-layer structure, consisting of three gold layers with 20 nm thickness and two dielectric spacer layers of MgF2 with 70 nm thickness inbetween. The fabrication was carried out by using 220 nm diameter PS spheres and 480 nm PMMA. Due to the large
  • sufficient oxygen plasma etching time has been reached. PS nanospheres of 119 nm diameter were used in all four examples. A variety of different nanostructures fabricated by hole-mask colloidal lithography: (a) ellipses, (b) split-rings, (c) asymmetric double split-rings, (d) dimers, (e) pentamers, (f) three
PDF
Album
Video
Full Research Paper
Published 06 May 2014

Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

  • Adrian Iovan,
  • Marco Fischer,
  • Roberto Lo Conte and
  • Vladislav Korenivski

Beilstein J. Nanotechnol. 2012, 3, 884–892, doi:10.3762/bjnano.3.98

Graphical Abstract
  • colloidal lithography to producing large-area sub-10 nm point-contact arrays and demonstrate their circuit integration into spin-photo-electronic devices. The reported nanofabrication method should have broad application areas in nanotechnology as it allows ballistic-injection devices, even for metallic
  • materials with relatively short characteristic relaxation lengths. Keywords: magnetic point contact arrays; spin laser; sub-10 nm colloidal lithography; Introduction Colloidal lithography [1] is a method to reproduce patterns in a variety of natural systems and is used more and more as an efficient
  • , including metals, is expected to enable a variety of new ballistic transport and photonic devices, such as spin-flip terahertz lasers [15]. In this work we extend the practice of colloidal lithography to produce large-area, near-ballistic-injection, sub-10 nm point-contact arrays and demonstrate their
PDF
Album
Full Research Paper
Published 19 Dec 2012

Tuning the properties of magnetic thin films by interaction with periodic nanostructures

  • Ulf Wiedwald,
  • Felix Haering,
  • Stefan Nau,
  • Carsten Schulze,
  • Herbert Schletter,
  • Denys Makarov,
  • Alfred Plettl,
  • Karsten Kuepper,
  • Manfred Albrecht,
  • Johannes Boneberg and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 831–842, doi:10.3762/bjnano.3.93

Graphical Abstract
  • tailor the magnetic domain sizes down to the width of an unperturbed domain wall in a continuous film, and moreover, we observe pinning and nucleation at or close to the imprinted defect structures. Keywords: colloidal lithography; magnetic data storage; magnetic nanostructures; percolated films
PDF
Album
Full Research Paper
Published 07 Dec 2012

Colloidal lithography for fabricating patterned polymer-brush microstructures

  • Tao Chen,
  • Debby P. Chang,
  • Rainer Jordan and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 397–403, doi:10.3762/bjnano.3.46

Graphical Abstract
  • , USA Department of Physical Chemistry, Lund University, SE-221 00 Lund, Sweden 10.3762/bjnano.3.46 Abstract We exploit a series of robust, but simple and convenient colloidal lithography (CL) approaches, using a microsphere array as a mask or as a guiding template, and combine this with surface
  • : atom-transfer radical polymerization; colloidal lithography; patterning; self-assembled microsphere monolayer; Introduction It is well known that monodisperse colloidal microspheres easily self-assemble into hexagonally close-packed arrays on surfaces as a result of capillary forces arising from the
  • [11][24] polymer brushes, and we recently reported how SMM could be used as µCP stamps to fabricate cone-shaped polymer brushes [25]. In this letter we report how we exploit a range of robust and simple patterning strategies offered by colloidal lithography, and combine them with surface-initiated
PDF
Album
Full Research Paper
Published 15 May 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • micromolding) may work as well [57]. For example, colloidal lithography was used to create gold nanopits on a TiO2 matrix, onto which methyl-terminated alkanethiol SAMs were chemisorbed [58]. While photochemical patterning of SAMs on a variety of substrates without the use of designated photoresists is
PDF
Album
Review
Published 20 Dec 2011

Fabrication of multi-parametric platforms based on nanocone arrays for determination of cellular response

  • Lindarti Purwaningsih,
  • Tobias Schoen,
  • Tobias Wolfram,
  • Claudia Pacholski and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2011, 2, 545–551, doi:10.3762/bjnano.2.58

Graphical Abstract
  • lack of nanofabrication techniques to generate functional structures. Recent advances in nanofabrication techniques such as nanoimprint lithography (NIL) [9], nanosphere/colloidal lithography [10], dip pen lithography [11], e-beam lithography [12] have enabled and motivated biomaterial development
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2011

Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process

  • Nicolas Vogel,
  • Ulrich Ziener,
  • Achim Manzke,
  • Alfred Plettl,
  • Paul Ziemann,
  • Johannes Biskupek,
  • Clemens K. Weiss and
  • Katharina Landfester

Beilstein J. Nanotechnol. 2011, 2, 459–472, doi:10.3762/bjnano.2.50

Graphical Abstract
  • nanoparticles (NPs) with dimensions of only several nanometers [11][12]. In contrast to conventional colloidal lithography, this approach employs the functional colloids as sacrificial carriers, rather than, e.g., being used as masks for metal evaporation. The size of the resulting metal NPs is determined by
PDF
Album
Video
Full Research Paper
Published 18 Aug 2011
Other Beilstein-Institut Open Science Activities